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Abstract

In this paper, we propose a new stochastic process named “camel process” for modelling the

cumulative return of financial asset. This new process has three parameters, the market condition

parameter α, the overreaction correction parameter β, and the volatility parameter γ. Its steady

state probability density function (PDF) could be unimodal or bimodal, depending on the sign of

the market condition parameter. The overreaction correction is realized through the non-linear

drift term which incorporates the cube term of the instantaneous cumulative return. The time-

dependent solution of its Fokker-Planck equation cannot be obtained analytically, but can be

numerically solved by finite difference method. The properties of the camel process are confirmed

by our empirical estimation results of ten market indexes in two different periods.
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1. Introduction

In this paper, we propose a new stochastic diffusion process called “camel process” to model

the cumulative return of a financial asset. The beauty of the camel process is that it consider the

market condition and the overreaction correction. The beast is that the time-dependent solu-

tion cannot be obtained analytically, but can be numerically solved by finite difference method.

The name of the “camel process” is inspired by its property that the steady state probability

density function (PDF) could be unimodal or bimodal, depending on the sign of the market

condition parameter. The overreaction correction is realized through the non-linear drift term

which incorporates the cube term of the instantaneous cumulative return.

There are two motivations for us to develop the camel process. Firstly, a financial market has

two typical conditions, either sidewalk or trending1. The behaviour of asset return is significantly

different in the two market conditions. However, the asset return models in the existing literature

seldom consider the market condition. Secondly, one drawback of the Geometric Brownian

motion used in the derivation of the Black-Scholes model is that the price could go infinity,

which is unrealistic. The camel process is designed to resolve those two problems.

We investigate the cumulative return rather than the price or log price for two reasons.

First, overreaction can be easily measured by the cumulative return. Second, the cumulative

return allows the comparison of investments in different financial assets. The cumulative return

investigated by us is defined as

Xt =

T∑
t=1

rt (1)

where rt is the log return 2 of the price process (Pt)t≥0 of the asset

rt = log(Pt)− log(Pt−1) (2)

The existing literature focus on the improvement of the the Black-Scholes from the perspective

that explaining the stylized facts of asset returns. It is well documented that empirical daily

return has stylized facts which are heavy-tail, “Long-Memory”, volatility clustering, Taylor effect,

etc (see Granger & Ding, 1995; Pagan, 1996; Cont, 2001). Those stylized facts indicate that the

independent normality assumption in the Black-Scholes model is unrealistic. In order to explain

1A trending market includes both bull market and bear market.
2Like most researches, we prefer the log return rather than the arithmetic return Yt = (Pt −Pt−1)/Pt−1. The

reason is that the cumulative return over n period is the sum of log return (shown in Equation 1), while the

arithmetic return does not have this property.
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the stylized facts, many researches have been devoted to modify the Geometric Brownian motion

used in the derivation of the Black-Scholes model.

The first type of alternative models is to use fractional Brownian motions. Mandelbrot (1997)

argues that successive price changes are not independent, and employs fractional Brownian mo-

tion to capture the dependent increments. In the finance study, a model should be self-consistent

and shows no arbitrage opportunity (Kou, 2007). Nevertheless, Rogers (1997) proves that the

fractional Brownian motion is not semi-martingale and shows the construction of arbitrage in

the fractional Brownian motion.

Stochastic volatility and GARCH models are developed to capture the stylized fact of volatil-

ity clustering. Jäckel (2004) reviews various stochastic volatility models with focus on the dy-

namic replication of exotic derivatives and their implementation. Bollerslev et al. (1992) provides

a comprehensive review on ARCH-family models. In addition to the price process, these models

introduces another process for the evolution of volatility so that the time dependence of volatility

could be captured.

Bingham & Kiesel (2001) asserts that the hyperbolic model is a good choice if someone wants

a model that is more complex than the benchmark Black-Scholes model but less complicated

than stochastic volatility models. Hyperbolic diffusion models are designed due to the empirical

evidence that hyperbolic distributions could be fitted to daily returns with high accuracy (Eber-

lein & Keller, 1995). These models use hyperbolic distributions rather than normal distributions.

Bibby & Sørensen (1996) model the logarithm of the stock price by an ergodic process with hy-

perbolic invariance measure, but their simulation shows that there is no significant difference

between the option price inferred by the hyperbolic diffusion model and by the Black-Scholes

model.

Merton (1976) derives an option pricing formula based on the assumption that the underling

stock returns are generated by the combination of continuous and jump processes. The unusual

large practically returns can be explained by the jump-diffusion model, which can also replicate

the heavy tail of the daily return distribution. Kou (2002) proposes a double exponential jump-

diffusion model which gives analytical solutions for path-dependent options. Cont & Tankov

(2004) reviews the models based on jump processes.

There are some other alternative models, “implied binomial tress” (Dupire et al., 1994), time

changed Lévy process (Carr et al., 2003), and affine jump-diffusion models (Duffie et al., 2000).
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2. The SDE and its properties

We propose a new stochastic process called “camel process” for the cumulative return of a

financial asset. The camel process is defined as

Definition. The camel process solves the stochastic differential equation (SDE)

dXt = (αXt − βX3
t ) dt+ γ dWt , X0 = 0 (3)

where α, β, and γ are three parameters with α ∈ R, β ∈ R≥0, and γ ∈ R+.

Parameter α is named as market condition parameter. If α > 0, the market is in a trending

market condition. Otherwise, it is in a sidewalk market condition. Parameter β controls the

correction for the overreaction behaviour in the market. If there is no overreaction occurred, β

is essentially zero. Parameter γ measures the volatility of the process. In the camel process, the

volatility is constant. In terms of the parameter space, α can be any real number, β is a non-

negative real number, and γ can only take positive real number. Since the underlying process

modelled is the cumulative return, the process always starts at zero.

2.1. Steady State PDF

It is difficult to analytically obtain the solution of the camel process due to its high order

non-linear term. We here use the Fokker-Planck equation to make partial analytic analysis. For

SDE, the Fokker-Planck equation is a partial differential equation (PDE) which describes the

evolution of its probability density p(Xt, t), namely the probability of realizations being near Xt

at time t. The Fokker-Planck equation constructs a useful relationship between the solution of

a SDE and its PDF along with time.

Applying the general Fokker-Planck equation on Equation 3 produces the PDF p(Xt, t) for

the camel process.

∂p(Xt, t)

∂t
= − ∂

∂Xt

[
(αXt − βX3

t )p(Xt, t)
]

+
∂2

∂X2
t

[
1

2
γ2p(Xt, t)

]
(4)

The steady state solution of the Fokker-Planck equation is the PDF evolving for a fairly long time

so that it converges to a stable function which no longer change along with time t. The steady

state PDF p(X) of the camel process satisfies the time-independent Fokker-Planck equation by

setting ∂p(Xt,t)
∂t = 0.

0 = − ∂

∂X

[
(αX − βX3)p(X)

]
+

∂2

∂X2

[
1

2
γ2p(X)

]
(5)
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Analytically solving 3 Equation 5 gives the solution of steady state PDF of the camel process

p(X) = A exp

(
αX2 − βX4/2

γ2

)
(6)

where A is the integration constant.

we show the steady-state PDF of the camel process could be unimodal or bimodal, depending

on the sign of the market condition parameter α. Figure 1 displays the steady state PDF of the

camel process for two combinations of parameter values. When α is less than zero, the steady

state PDF is unimodal, which look like a one-humped camel. If α is larger than zero, the steady

state PDF is bimodal, looking like a two-humped camel.4 The name of the “camel process” was

inspired by the feature that its steady-state PDF could be unimodal or bimodal, which reminds

people two types of camels.

Parameter α is named as market condition parameter since its sign determines whether

the steady state PDF is unimodal or bimodal. The unimodal situation corresponds to the

sidewalk market condition. In this situation, the underlying process (the cumulative return)

has a tendency to zero because the SDE drift term has an opposite sign to its instantaneous

cumulative return. Hence, the price series shows a mean-reverting pattern and the steady state

PDF is centralized around zero. The bimodal situation corresponds to the trending market

condition in which price tends to move towards upside or downside. In a trending market, a

positive α generally causes that the SDE drift term has the same sign as the instantaneous

cumulative return within the rational region. The cumulative return moves away from the start

point, zero. In the steady state, the two modes of the PDF deviate from zero. The camel

process is arbitrage-free and self-consistent. Either in unimodal situation or bimodal situation,

the moving direction of the cumulative return is unknown. There is no arbitrage opportunity in

our framework.

The price assumed by a Geometric Brownian motion can go up to infinity without any limit,

which is not realistic. In order to resolve this problem, we use a non-linear drift term which

incorporates the cube of the instantaneous cumulative return. Through this non-linear drift

term, the underlying process cannot go to infinity. It will be corrected if it go beyond the rational

level. Overreaction behaviour means that the price goes beyond its rational level. Correction on

the overreaction means that we expect that the price would go back into its rational range if it is

in the overreaction area. Note that overreaction only happens in the trending market condition.

3Details of mathematical derivation are presented in Appendix A.
4The case that α is equal to zero is shown in Appendix B.
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Figure 1: market condition Parameter α

Unimodal v.s. Bimodal

Parameter β is the parameter which controls the overreaction correction. Figure 2 displays

the steady state PDF of both sidewalk and trending market condition. There is no big effect of

the overreaction correction parameter β on the steady state PDF when the market is in sidewalk.

However, the effect of β is vital if the market is in trending state. A larger value of β forces the

mode of steady state PDF more close to zero. In contrast, the mode of steady state PDF can

move further away if β is small.

The overreaction correction is realized through the non-linear drift term αXt−βX3
t . Figure 3

shows the shape of the non-linear drift term under both market conditions. In a sidewalk market

condition, the drift term always has the opposite sign as the instantaneous cumulative return.

Hence, the cumulative return move towards to zero and shows the mean-reverting pattern. Under

this situation, the overreaction correction normally rarely occurs. However, the overreaction

correction plays a vital role in the trending market condition. As you can see in the lower panel

of Figure 3, there is a middle region that the drift term has the same sign as the instantaneous

cumulative return. There are other two side regions that the sign is opposite. The two side

regions are deemed as the overreaction area. If the cumulative return go into the overreaction

area, the drift term would force it move back the rational region, which is the one in the middle.

The range of the rational region is control by the parameter β. If the value of β is large,

then the magnitude of overreaction correction is stronger and the rational region is narrower.

Conversely, a smaller β means that the market can tolerate overreaction to a larger extent. Thus,

the range of the rational region is wider.
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Figure 2: Volatility Parameter β
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Figure 3: Drift Term

7



Parameter γ is named as the volatility parameter. It controls the volatility magnitude of the

dWt. Figure 4 illustrates that the steady state PDF is more diversified with a larger value of γ.

By contrast, a smaller value of γ results in a more centralized steady state PDF. Importantly,

the mode of the steady state PDF remains the same regardless the change of the value of γ under

both unimodal or bimodal situations. The mode of the steady state PDF only depends on the

market condition parameter α and the overreaction parameter β.
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Figure 4: Volatility Parameter γ

2.1.1. Time Dependent PDF

Without the assumption ∂p(Xt,t)
∂t , the solution of Equation 4 is the time dependent PDF

p(Xt, t) of the camel process, which is evolving with time t and converges to its steady state

PDF p(X). The analytical solution of the Fokker-Planck equation can only be obtained in a

limited special cases, and mostly in the steady state (Pichler et al., 2013). During the past five

decades, a number of numerical methods have been developed to obtain the approximated solu-

tion of the Fokker-Planck equation. These numerical methods includes weighted residual method,
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eigenfunction expansion, finite differences, and finite elements. Here, we follow Roberts (1986)

to use the finite difference method to solve the Fokker-Planck equation for the one-dimensional

5 time dependent PDF. Although there are more accurate higher order finite difference schemes

(see Wojtkiewicz et al., 1997), Roberts’ method is enough for the one-dimensional Fokker-Planck

equation. Our examples show the numerically solved time dependent PDF converges to steady

state PDF accurately.

In order to use finite difference method to numerically solve the Fokker-Planck equation, we

need to clarify the initial condition, the boundary condition, and the normalization condition.

The initial condition p(X0, 0) is given by the Dirac delta function

p(X0, 0) = δ(X0 − 0) (7)

where X0 is zero since the underlying process is the cumulative return.

The boundary condition is imposed by a zero-flux condition at infinity of Xt

p(Xt, t)→ 0 as Xt → ±∞ (8)

Additionally, the normalization condition for the time dependent PDF is given by∫
p(Xt, t) dXt = 1 (9)

Here, we derive the explicit scheme of the Finite Difference method. Applying the chain rule

on Equation 4, we can obtain

∂p(Xt, t)

∂t
= (−α+ 3βX2

t )p(Xt, t) + (−αXt + βX3
t )
∂p(Xt, t)

∂Xt
+

1

2
γ2
∂2p(Xt, t)

∂X2
t

(10)

In order to keep the notation cleaner, we suppress the time subscript of Xt as X, and suppress

the argument Xt and t of the time dependent PDF p(Xt, t) and use the notation p.

∂p

∂t
= (−α+ 3βX2)p+ (−αX + βX3)

∂p

∂X
+

1

2
γ2

∂2p

∂X2
(11)

In terms of central finite differences, the above PDF becomes

pm+1
i − pmi

∆t
= (−α+ 3βX2)pmi + (−αX + βX3)

pmi+1 − pmi−1
2∆X

+
1

2
γ2
pmi+1 − 2pmi + pmi−1

∆X2
(12)

where m is the integer index of the mesh on time and i is the integer index of the mesh on the

space.

5In our case, there is only spatial variable Xt besides the time variable t.
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The explicit scheme is obtained for the time dependent PDF

pm+1
i = pmi + ∆t

{
(−α+ 3βX2)pmi + (−αX + βX3)

pmi+1 − pmi−1
2∆X

+
1

2
γ2
pmi+1 − 2pmi + pmi−1

∆X2

}
(13)

Using this scheme, the values pm+1
i can be calculated directly from values pmi . Under the initial

condition, boundary condition, and the normalization condition, the time dependent PDF can

be solved directly.

Figure 5 displays two examples of the numerical solution of the time dependent PDF starting

at time 1 6. The upper panel is the case of sidewalk market condition which α is negative.

The Lower panel is the case of trending market condition which α is positive. In the sidewalk

market condition, the time dependent PDF is always unimodal. While in the trending market

condition, the time dependent PDF at the early stage is unimodal because it evolves from the

initial condition which is a Dirac delta function. After some periods, the time dependent PDF

appears to be bimodal and the density around the two modes is getting increasingly higher along

with time.

Figure 6 shows some slices of the time dependent PDF and compares them with the steady

state PDF. In the upper panel (sidewalk market condition), the time dependent PDF converges

to the steady state PDF quickly. The difference is subtle between time dependent PDF at t = 20

and steady state. After 50 periods, the time dependent PDF almost overlaps with the steady

state PDF. However, the convergence rate in the lower panel (trending market condition) is

slower. At t = 20, the time dependent PDF is still unimodal. After 40 periods, we can observe

that the time dependent PDF is bimodal and evolves towards the steady state PDF. At t = 100,

it is not obvious to distinguish the time dependent PDF and the steady state PDF.

6The PDF at time 0 is omitted here because that is the initial condition which is a Dirac delta function.
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3. Empirical Study

3.1. Data

The maximum likelihood method is employed to estimate the camel process for ten stock

market indexes, S&P 500, FTSE 100, CAC 40, DAX, Nikkei 225, STI, ASX 200, CSI 300 (a.k.a.

SHSE 300), HSI, and TAIEX. We download daily closing prices from Yahoo Finance and compute

the cumulative returns by Equation 1. We are particularly interested in two specific periods,

August 1st 2008 to March 31st 2009 and May 1st 2014 to April 30th 2016. The first period is after

the financial crisis in 2008 and all markets experienced a downside trend. Thus, we expect to see

the estimated market condition parameters α̂ are all positive for different markets. The second

period is the recent year and different markets may behave differently. We can use the estimated

parameters to investigate their market conditions and magnitude of overreaction correction for

the two periods.

3.2. Maximum Likelihood Estimator

The log likelihood function for the camel process given a specific dataset is

L (Θ) =

T∑
t=1

log p(Xt, t|Θ) (14)

where Θ = {α, β, γ}, Xt is the observation at time t, and p(Xt, t|Θ) is the numerical solver

of Equation 10. The maximum likelihood method estimates parameters by maximizing the log

likelihood function.

Θ̂ = arg max
Θ

T∑
t=1

log p(Xt, t|Θ) (15)

where Θ̂ needs to stay in the parameter space that α ∈ R, β ∈ R≥0, and γ ∈ R+.

3.3. Estimation Result

Table 1 presents the estimated parameters for ten indexes during two periods. In the first

period (Aug. 2008 to Apr. 2009), the estimated market condition parameter α̂ are all positive,

indicating that they were all in a trending market condition. This is consistent with the reality

that all ten markets had a downside trend after the financial crisis. S&P 500, STI and DAX have

relatively large values of β̂, implying that those three markets had strong overreaction correction

for the market crash after the financial crisis.
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Table 1: Estimation Result

Aug. 2008 ∼ Apr. 2009 May. 2015 ∼ Apr. 2016

α̂ β̂ γ̂ likelihood α̂ β̂ γ̂ likelihood

S&P500 0.498 4.217 0.256 98.513 -0.106 0.000 0.025 536.050

FTSE100 0.057 0.680 0.039 193.790 0.010 0.515 0.011 480.400

CAC40 0.070 0.551 0.056 138.760 -0.020 0.666 0.024 436.110

DAX 0.237 1.790 0.113 110.950 0.009 0.568 0.011 439.200

Nikkei225 0.084 0.374 0.034 165.020 -0.039 1.418 0.036 394.420

STI 0.063 2.592 0.349 22.264 0.021 0.351 0.019 357.100

ASX200 0.046 0.407 0.027 223.150 0.020 0.883 0.008 529.300

CSI300 0.092 0.657 0.059 131.820 0.208 1.748 0.109 182.570

HSI 0.085 0.308 0.056 137.570 0.069 0.845 0.041 269.690

TAIEX 0.246 1.624 0.093 123.190 0.016 0.521 0.012 420.130

In the second period (May. 2015 to Apr. 2016), S&P, CAC 40 and Nikkei 225 were in a

sidewalk condition, while other markets were in a trending condition. CSI 300 has highest value

of the estimated market condition parameter α̂ (0.208), suggesting that the Chinese market

experienced a relatively large trend. Our estimation result is consistent with reality. Figure 7

compares the cumulative return of S&P 500 and CSI 300. It is clear that S&P 500 was in a

sidewalk market condition in which its cumulative return was fluctuating around zero, while CSI

300 had a big trend and its cumulative return largely deviated from zero.
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Figure 7: Cumulative Return of S&P 500 and CSI 300 (May. 2015 to Apr. 2016)
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4. Conclusion

In this paper, we propose a new stochastic process named “camel process” for modelling

the cumulative return of financial asset. This new process has three parameters, the market

condition parameter α, the overreaction correction parameter β, and the volatility parameter γ.

Its steady state probability density function (PDF) could be unimodal or bimodal, depending on

the sign of the market condition parameter. The overreaction correction is realized through the

non-linear drift term which incorporates the cube term of the instantaneous cumulative return.

The time-dependent solution of its Fokker-Planck equation cannot be obtained analytically, but

can be numerically solved by finite difference method. The properties of the camel process are

confirmed by our empirical estimation results of ten market indexes in two different periods. A

limitation of this paper is that the parameters of the camel process is possibly time-varying.

Future research may wish to develop the change point detection for the camel process.

Appendix A. Steady State Solution of the Fokker-Planck Equation

Theorem (Fokker-Planck equation). Consider the Ito process Xt with drift µ(Xt) and volatility

σ(Xt), and hence satisfying the SDE dXt = µ(xt)dt+σ(xt)dWt. The probability density function

(PDF) of the ensemble of realizations p(Xt, t) satisfies the Fokker-Planck equation 7.

∂p(Xt, t)

∂t
= − ∂

∂Xt
[µ(Xt)p(Xt, t)] +

∂2

∂X2
t

[
1

2
σ(Xt)

2p(Xt, t)

]

The camel process solves the SDE

dXt = (αXt − βX3
t )dt+ γdWt, X0 = 0 (A.1)

where α ∈ R, β ∈ R≥0, and γ ∈ R+. The drift term is αXt − βX3
t and the volatility term is γ.

The Fokker-Planck equation for the camel process is

∂p(Xt, t)

∂t
= − ∂

∂Xt

[
(αXt − βX3

t )p(Xt, t)
]

+
∂2

∂X2
t

[
1

2
γ2p(Xt, t)

]
(A.2)

By setting ∂p(Xt,t)
∂t = 0, we can obtain the steady state PDF p(X) which satisfies the time-

independent Fokker-Planck equation

0 = − ∂

∂X

[
(αX − βX3)p(X)

]
+

∂2

∂X2

[
1

2
γ2p(X)

]
(A.3)

7The Fokker-Planck equation is also known as the Kolmogorov forward equation.
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One integral with respect to X∫
0 dX =

∫
− ∂

∂X

[
(αX − βX3)p(X)

]
+

∂2

∂X2

[
1

2
γ2p(X)

]
dX

0 = −(αX − βX3)p(X) +
∂

∂X

[
1

2
γ2p(X)

]
+ constant

constant = −(αX − βX3)p(X) +
∂

∂X

[
1

2
γ2p(X)

]
This constant must be zero, as p(X) and its derivatives have to vanish for large enough X

0 = −(αX − βX3)p(X) +
∂

∂X

[
1

2
γ2p(X)

]
0 = −(αX − βX3)p(X) +

1

2
γ2

dp(X)

dX
1

2
γ2

dp(X)

dX
= (αX − βX3)p(X)

1

p(X)
dp(X) =

2(αX − βX3)

γ2
dX

Integral on both hand sides∫
1

p(X)
dp(X) =

∫
2(αX − βX3)

γ2
dX

log p(X) =

∫
2αX

γ2
− 2βX3

γ2
dX

=

∫
2αX

γ2
dX −

∫
2βX3

γ2
dX

=
αX2

γ2
− βX4/2

γ2
+ constant

=
αX2 − βX4/2

γ2
+ constant

Taking exponential on both hand sides produce the solution

p(X) = A exp

(
αX2 − βX4/2

γ2

)
(A.4)

where A is the integration constant. In order to determine the integration constant A, we can

use the property of PDF that the area underneath must be one.

1 =

∫ ∞
0

A exp

(
αX2 − βX4/2

γ2

)
dX

1 = A

∫ ∞
0

exp

(
αX2 − βX4/2

γ2

)
dX

A =

(∫ ∞
0

exp

(
αX2 − βX4/2

γ2

)
dX

)−1
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Applying series expansion and integrating with respect to individual items

A =


1

2

∞∑
m=0

(
α

γ2

)m

m!

Γ

(
2m+ 1

4

)
(

β

2γ2

)2m+ 1

4



−1

(A.5)

where Γ(·) is the gamma function.

Appendix B. Steady State PDF when α is zero
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Figure B.8: when α is zero, the Steady State PDF has a flat area near zero in the x-axis.
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